The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells.

نویسندگان

  • Cindy Chung
  • Michael Beecham
  • Robert L Mauck
  • Jason A Burdick
چکیده

The potential of mesenchymal stem cells (MSCs) as a viable cell source for cartilage repair hinges on the development of engineered scaffolds that support adequate cartilage tissue formation. Evolving networks (hydrogels with mesh sizes that change over time due to crosslink degradation) may provide the control needed to enhance overall tissue formation when compared to static scaffolds. In this study, MSCs were photoencapsulated in combinations of hydrolytically and enzymatically degradable hyaluronic acid (HA) hydrogels to investigate the tunability of these hydrogels and the influence of network evolution on neocartilage formation. In MSC-laden HA hydrogels, compressive mechanical properties increased when degradation complemented extracellular matrix deposition and decreased when degradation was too rapid. In addition, dynamic hydrogels that started at a higher wt% and decreased to a lower wt% were not equivalent to static hydrogels that started at the higher or lower wt%. Specifically, evolving 2 wt% hydrogels (2 wt% degrading to 1 wt%) expressed up-regulation of type II collagen and aggrecan, and exhibited increased glycosaminoglycan content over non-evolving 2 and 1 wt% hydrogels. Likewise, mechanical properties and size maintenance were superior in the dynamic system compared to the static 2 wt% and 1 wt% hydrogels, respectively. Thus, hydrogels with dynamic properties may improve engineered tissues and help translate tissue engineering technology to clinical application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Hydrogel Stiffness and Extracellular Compositions on Modulating Cartilage Regeneration by Mixed Populations of Stem Cells and Chondrocytes In Vivo.

Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonat...

متن کامل

In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration

Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...

متن کامل

Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels.

Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matr...

متن کامل

The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels.

Synthetic hydrogel scaffolds that can be used as culture systems that mimic the natural stem cell niche are of increased importance for stem cell biology and regenerative medicine. These artificial niches can be utilized to control the stem cell fate and will have potential applications for expanding/differentiating stem cells in vitro, delivering stem cells in vivo, as well as making tissue co...

متن کامل

Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels

Photocrosslinked methacrylated hyaluronic acid (MeHA) hydrogels support chondrogenesis of encapsulated human mesenchymal stem cells (hMSCs). However, the covalent crosslinks formed via chain polymerization in these hydrogels are hydrolytically non-degradable and restrict cartilage matrix spatial distribution and cell spreading. Meanwhile, cells are known to remodel their surrounding extracellul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 30 26  شماره 

صفحات  -

تاریخ انتشار 2009